Monotonic norms in ordered Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiproximinal Norms in Banach Spaces

We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal...

متن کامل

Common Fixed Points in Ordered Banach Spaces

In [1] Dhage, O’Regan and Agarwal introduced the class of weak isotone mappings and the class of countably condensing mappings in an ordered Banach space and they prove some common fixed point theorems for weak isotone mappings. In this paper we introduce the notion of g-weak isotone mappings which allows us to generalize some common fixed point theorems of [1]. We recall the definition of orde...

متن کامل

Almost Transitive and Maximal Norms in Banach Spaces

We prove that the spaces `p, 1 < p < ∞, p 6= 2, and all infinite-dimensional subspaces of their quotient spaces do not admit equivalent almosttransitive renormings. This answers a problem posed by Deville, Godefroyand Zizler in 1993. We obtain this as a consequence of a new property ofalmost transitive spaces with a Schauder basis, namely we prove that in suchspaces the unit...

متن کامل

Locally Uniformly Convex Norms in Banach Spaces and Their Duals

It is shown that a Banach space with locally uniformly convex dual admits an equivalent norm that is itself locally uniformly convex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1988

ISSN: 0263-6115

DOI: 10.1017/s1446788700030123